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Abstract

A technique based on a successive approximation method is proposed to solve direct and inverse problems of radiative
exchange among surfaces[ With the present technique\ the radiative exchange can be formulated by an expression in
terms of some integrals and the surface re~ectivity[ The integrals are independent of the re~ectivity and can be obtained
by only one calculating procedure\ provided that the geometry is _xed[ The Monte Carlo method and the quadrature
method are applied to perform the integration[ Thus\ after obtaining the integrals\ the direct solutions for the values of
the re~ectivity of some concern to us can be readily obtained by substituting those values into the expression[ Moreover\
employing the present technique\ we can solve an inverse problem estimating the surface re~ectivity without solving the
associated direct problem repetitively[ Results of the three examples considered show that both of the direct and inverted
results are in good agreement with the benchmark solutions[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a channel radius
A area of enclosure surface
Ap a _nite surface
B9\ B s

m\ Bd
m coe.cients in equation "19#\ de_ned by equa!

tions "10#Ð"12#
B9

m0m1
\ B0

m0m1
\ B1

m0m1
coe.cients in the successive approxi!

mation of Q−
d \ see equation "13#

cr function de_ned by equation "02#
cv function de_ned by equation "07#
C tube center!to!center distance
D tube diameter or sphere diameter
E emissive power
` function describing the geometry of enclosure surface\
see equation "A2#
H row separation distance
I radiation intensity
K integral operator\ de_ned in equation "4#
L channel length
M degree of the polynomial for I or Q−

n¼ unit normal vector
N bundle number

� Corresponding author[ Fax] 99775 5 124 1862

Q radiative transfer rate
r¹ position vector
Rf apparent re~ectivity
s¼ unit vector along a given direction
T temperature
Tr apparent transmissivity
U9\ U s

m\ Ud
m coe.cients in equations "8# and "04#\

de_ned by equations "09#Ð"01# and "05#Ð"06#
V driving term\ de_ned in equation "1#
W side length of a unit cell[

Greek symbols
o emissivity
u polar angle
r re~ectivity
r¼ inverted r

s¼ "r¼ # estimator of the standard deviation of r¼
m cosine of polar angle
V solid angle[

Subscripts
b blackbody
d di}use
i incoming
o external\ or from outside
s specular
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tr transmitted through a channel
l at a given wavelength[

Superscripts
− entering opaque surface or leaving the enclosure
d di}use
s specular[

0[ Introduction

Radiative exchange of thermal energy among surfaces
separated by vacuum or a nonparticipating medium plays
an important role in many applications ð0\ 1Ł[ Since ther!
mal radiation is a long!range phenomenon\ in order to
make a radiative energy balance we always need to con!
sider a complete enclosure consisting of real surfaces
of known re~ectivity and temperature "or ~ux# and:or
imaginary surfaces "openings# over which the entering
radiation is speci_ed ð2Ł[ The radiative exchange of ther!
mal energy among surfaces in nature is governed by the
integral equation of radiation intensity ð2Ł[ For this
reason\ it is important to understand the mathematical
character of the integral equation and the behavior of its
solution[ Since the radiative exchange among surfaces is
determined by the surface re~ectivity\ the geometry and
the distribution of temperature "or heat ~ux# of real sur!
faces and entering radiation through openings\ the inte!
gral equation governing the physical process is also deter!
mined by the three factors[ In this work\ we call the third
factor the driving term of the integral equation[ In a lot
of situations\ we need to consider the variation of surface
radiative exchange with respect to the re~ectivity\ as the
geometry and the driving term are _xed[ Based on obser!
vation and deliberation on the successive approximation
ð1Ł\ one of the most popular solution methods for integral
equations\ we _nd that for a rather large class of problems
the surface re~ectivity can be assumed constant or piece!
wise constant\ and can be brought outside the integrals
of the governing equation as well as the solutions
obtained by the successive approximation[ Once the inte!
grals independent of the surface re~ectivity are evaluated\
the successive approximation solution becomes an
algebraic expression in terms of the surface re~ectivity[
In other words\ the variation of surface radiative ex!
change with respect to the re~ectivity can be readily found
by substituting the various values of the re~ectivity into
the algebraic expression without re!calculating the inte!
grals[ This feature of the successive approximation solu!
tion can enhance the e.ciency\ especially when the inte!
gration involved is time!consuming and laborious[
Therefore\ in this work\ we aim at developing the new
application of the successive approximation to the prob!
lems\ for which the solutions for various values of the
re~ectivity are desired[ This family of problems includes\
among others\ the inverse problem of estimating the

re~ectivities of surfaces of known geometry for the case
with a given driving term[ The present technique is prom!
ising for this family of problems\ because it can generate
direct or inverse solutions without repeating time!con!
suming integration[

To evaluate the coe.cients of the algebraic expression
in terms of the surface re~ectivity\ we adopted the reverse
Monte Carlo method "RMC# ð3\ 4Ł and the quadrature
method "QM# ð5Ł to perform multiple integrations[ The
present technique needs only a single calculating pro!
cedure to generate the expression for various values of
the surface re~ectivity[ Then\ to demonstrate the present
technique\ three examples\ thermal radiation transmitted
through a cylindrical channel\ radiative exchange in a
packed sphere system and radiative transfer from an
in_nite plane to rows of parallel tubes of in_nite length\
are considered in Section 3[ To assess the present tech!
nique\ comparisons are made of the present results and
the results available in the literature[

Both direct and inverse solutions are considered in
the three examples[ However\ we put more emphasis on
inverse solutions because of the feature of the present
technique[ That is\ if the radiative intensity\ or ~ux\ or
transfer rate on a real surface or an opening has been
measured\ the surface re~ectivity can be estimated by
applying a root!_nding method to the algebraic equation
of the surface re~ectivity rather than by solving direct
surface radiation exchange iteratively as done in many
other methods for inverse problems[ A few reports on
the estimation of the distribution of surface temperature
have been presented recently ð6Ð01Ł\ while work on the
estimation of a surface radiative property seems to be
rare[ Therefore\ we apply the present technique to the
inverse problems of radiative exchange among surfaces\
where the surface re~ectivity is to be estimated[ In the
three examples\ we estimate the surface re~ectivity of
either simple or complicated enclosures\ including cases
with piece!wise constant re~ectivity[ The e}ects of geo!
metric sizes and measurement errors on the inverted
results are examined for various values of the surface
re~ectivity[

1[ Analysis

The enclosure model is adopted here to describe the
physical process of radiative exchange among surfaces
in the absence of a participating medium[ Consider an
arbitrary enclosure composed of real surface and:or
imaginary surfaces "openings#\ through which external
irradiation may enter the enclosure\ as shown in Fig[ 0[
The real surfaces are emitting\ absorbing and re~ecting\
while the imaginary ones can be regarded as non!par!
ticipating[ The radiation intensity I leaving an in_ni!
tesimal surface element dA de_ned by a position vector
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Fig[ 0[ The geometry of an enclosure[

r¹ into the direction s¼ can be described by the integral
equation

I"r¹\s¼# � V"r¹\s¼#¦g1p

rý"r¹\s¼?\s¼#I"r¹\s¼?#mi dVi\ n¼ = s¼ × 9

"0#

where rý"r¹\s¼?\s¼# denotes the bi!directional re~ection func!
tion of dA for incident direction s¼? and leaving direction
s¼\ dVi � dA? cos u?:=r¹−r¹?=1\ mi � cos ui �"−s¼?# = n¼ with n¼
denoting the unit normal vector at dA\ as shown in Fig[
0\ and V"r¹\s¼# the driving term de_ned by

V"r¹\s¼# �

6
o?"r¹\s¼#Ib"r¹#\ if r¹ is located on a real surface

Io"r¹\s¼#\ if r¹ is located on an imaginary surface
"1#

with o?"r¹\s¼# denoting the directional emissivity of dA\
Ib"r¹# the blackbody intensity\ and Io"r¹\s¼# the intensity of
entering radiation in the direction s¼ at dA[ The driving
term is due to emission of a real surface or entering
radiation through an opening\ and Ib"r¹# can be related to
the local surface temperature T"r¹# through Planck|s law[
The integral term of equation "0# is the contribution of
re~ected radiation on a real surface or identically zero\
because rý"r¹\s¼?\s¼# � 9 for an imaginary surface[ Besides\ a
subscript l denoting dependence on radiation wavelength
has been dropped for simplicity[ Hence\ the above
governing equation of intensity can be applied to describ!
ing monochromatic or gray!surface!property radiative
exchange[

In the absence of a participating medium\ the incident

intensity at r¹ along s¼? is equal to the leaving intensity at
r¹? along s¼?\

I"r¹\s¼?# � I"r¹?\s¼?# "2#

r¹? in equation "2# de_nes the location\ where the incident
radiation originates from emission and re~ection or from
entering radiation[ Besides\ r¹? is determined by r¹\ s¼? and
the geometry of the enclosure\ as shown in Fig[ 0[

Combining equations "0# and "2#\ we obtain

I"r¹\s¼# � V"r¹\s¼#¦g1p

rý"r¹\s¼?\s¼#I"r¹?\s¼?#mi dVi\

n¼ = s¼ × 9 "3#

If the re~ectivity\ the geometrical shape and the driving
term "T for all real surfaces and Io for all imaginary
surfaces# are completely speci_ed for all surfaces of the
enclosure\ we can _nd I by solving equation "3#[ Equation
"3# in essence is a Fredholm integral equation of the
second kind[ This is shown in the Appendix[

To abbreviate mathematical expression\ we introduce
an integral operator K\ de_ned by

KðIŁ"r¹\s¼# 0 g1p

rý"r¹\s¼?\s¼#I"r¹?\s¼?#mi dVi "4#

Then\ equation "3# reduces to

I"r¹\s¼# � V"r¹\s¼#¦KðIŁ"r¹\s¼# "5#

If we replace I under the integral sign of equation "5# with
equation "4# by an initial approximation I"9#\ equation "5#
determines an approximation for the radiation intensity
leaving an opaque surface

I "0# "r¹\s¼# � V"r¹\s¼#¦KðI "9#Ł"r¹\s¼# "6#

Then\ the higher order approximation for I can be
obtained by substituting the current approximation into
the right!hand!side of equation "5#[ Repeating this pro!
cedure\ we obtain the in_nite series solution

I"r¹\s¼# � V"r¹\s¼#¦ s
�

m�0

Km ðVŁ"r¹\s¼# "7#

Obviously\ the expression of I is a series of multiple
integrations of the driving term\ and KmðVŁ"r¹\s¼# for
m − 0 represents the contribution of radiation for m!time
re~ections[ In practice\ the re~ectivities of real surfaces
of the considered enclosure are less than one\ or the real
surface re~ectivities are unity but the enclosure has one
opening at least[ Thus\ radiation may be absorbed by real
surfaces or leave the enclosure through openings after
several re~ections\ so the contribution of m!time re~ec!
tions approaches zero as m becomes in_nite[ Hence\ the
series in equation "7# converges and the series may be
truncated after a speci_c term\ say m � M\ in actual
computation[ Then\ the truncated expression of equation
"7# is a successive approximation solution for I"r¹\s¼#[
Besides\ it is noticed that the in~uence of the geometry
and the surface re~ectivity on I is coupled through the
integral operator K[
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In many engineering applications\ the entire enclosure
surface can be assumed to be composed of a _nite number
of discrete surfaces over which the radiative properties
are uniform[ Furthermore\ we may divide the solid angle
domain 1p into discrete solid angle elements such that
the bi!directional re~ection function can be assumed con!
stant within each discrete solid angle element and may
vary from element to element[ By increasing the number
of discrete surfaces and re_ning the size of the solid angle
elements\ the actual distribution of the bi!directional
re~ection function can be approximated to any degree of
accuracy[ Then\ with the piece!wise constant approxi!
mation\ the surface re~ectivity can be brought outside the
integrals of equation "7#[ Hence\ the resulting integrals of
the successive approximation solution depend on both
the geometry and the driving term\ but are independent
of the surface re~ectivity[ Once the integrals are evalu!
ated\ the successive approximation solution reduces to
an algebraic expression in terms of the surface re~ectivity[
When the geometry and the driving term keep _xed and
the surface re~ectivity is changed alone\ the surface radi!
ative exchange for various values of the re~ectivity can
be readily obtained by substituting the values of the
re~ectivity into the algebraic expression without re!evalu!
ation of the time!consuming integrals[ To exemplify the
present technique clearly\ we assume that the surface
re~ection is either di}use or specular and the surface
emission is negligible or absent[ From equation "1#\ it is
readily found that either the entering radiation or the
emission plays the role of driving term\ and so the present
technique can be employed to solve problems with sur!
face emission[ Moreover\ the present technique can be
extended to cases with more complex re~ectivity dis!
tributions\ provided that the surface re~ectivity can be
approximated by a piece!wise constant function[

First\ we consider the specular re~ection case[ When
the real opaque surfaces of the enclosure have a uniform
specular re~ectivity rs independent of the incoming direc!
tion\ rs can be brought outside the integral de_ned by
equation "4#[ Then\ the truncated expression of equation
"7# becomes

I"r¹\s¼# � U9"r¹\s¼#¦ s
M

m�0

rm
s U s

m"r¹\s¼# "8#

where

U9"r¹\s¼# � ð0−cr"r¹#ŁIo"r¹\s¼# "09#

U s
0"r¹\s¼# � cr"r¹#U9"r¹?\s¼?s# "00#

U s
m"r¹\s¼# � cr"r¹#U s

m−0"r¹?\s¼?s# "01#

for 1 ¾ m ¾ M\ and

cr"r¹# � 6
0\ if r¹ is located on a real surface

9\ if r¹ is located on an imaginary surface

"02#

Here\ s¼ and s¼?s are the directions after and before the

specular re~ection occurring at dA\ respectively^ that is\
they obey the specular re~ection law

s¼ � s¼?s¦1=s¼?s = n¼ =n¼ "03#

Next\ we consider the case in which the real opaque
surfaces are di}usely re~ecting and have a uniform
re~ectivity rd[ Then the truncated expression of equation
"7# reduces to

I"r¹\s¼# � U9"r¹\s¼#¦ s
M

m�0

rm
d Ud

m"r¹# "04#

where

Ud
0"r¹# �

0
p

cr"r¹# g1p

U9"r¹?\s¼?#mi dVi

� cr"r¹# gA

cv"r¹?^r¹#U9"r¹?\s¼?#
mim?

p=r¹−r¹?=1
dA? "05#

Ud
m"r¹# �

0
p

cr"r¹# g1p

Ud
m−0"r¹?#mi dVi

� cr"r¹# gA

cv"r¹?^r¹#Ud
m−0"r¹?#

mim?

p=r¹−r¹?=1
dA? "06#

for 1 ¾ m ¾ M\ with m? � cos u? � s¼? = n¼?\ as shown in Fig[
0\ and

cv"r¹?^r¹# � 6
0\ if dA? can be seen from dA

9\ if dA? cannot be seen from dA
"07#

Here\ s¼? can be expressed by r¹ and r¹?\ as shown by equa!
tion "A1#\ and we have transformed the solid angle inte!
grals into surface integrals[

If the enclosure consists of di}usely re~ecting surfaces
where the local temperature or heat ~ux is speci_ed\ the
above formulation in terms of leaving intensity from a
surface element can be readily transformed to that in
terms of local radiosity[ The equation of radiosity is still
a Fredholm integral equation of the second kind ð1Ł[

We are often interested in _nding the incident radiative
transfer rate for a _nite surface Ap of the enclosure[ This
quantity is de_ned by

Q− � gAp
g1p

I"r¹\s¼?#mi dVi dA "08#

Substituting equation "2# and the successive approxi!
mation of I"r¹?\s¼?# into equation "08#\ we can express the
incident radiative transfer rate as

Q−
a � B9¦ s

M

m�0

Ba
mrm

a "19#

for a � s or d\ where

B9 � gAp
g1p

U9"r¹?\s¼?#mi dVi dA

� gAp
gA

cv"r¹?^r¹#U9"r¹?\s¼?#
mim?

=r¹−r¹?=1
dA? dA "10#
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B s
m � gAp

g1p

U s
m"r¹?\s¼?#mi dVi dA "11#

Bd
m � gAp

g1p

Ud
m"r¹?#mi dVi dA

� gAp
gA

cv"r¹?^r¹#Ud
m"r¹?#

mim?

=r¹−r¹?=1
dA? dA "12#

for 0 ¾ m ¾ M[
It is worth pointing out that "i# the right!hand!side of

equation "8#\ "04# or "19# is a polynomial of ra\ "ii# the
coe.cients of the polynomial are multiple integrations
of the driving term\ and "iii# the coe.cients are inde!
pendent of the surface re~ectivity if the surface emission
is negligible or absent[ As the surface emission is present\
the emissivity is related to the constant surface re~ectivity
through Kirchho}|s law and can also be brought outside
the integrals of the driving term[ Then\ an additional
factor 0−ra appears and the resulting expression is also
an algebraic expression in terms of ra[ For example\ if
the enclosure considered consists of imaginary surfaces
and two opaque di}usely re~ecting surfaces with re~ec!
tivities rd0 and rd1\ the successive approximation of Q−

d

may be expressed as

Q−
d � s

M0

m0�9

s

M1

m1�9

B9
m0m1

rm0
d0r

m1
d1

¦"0−rd0# s

M0

m0�9

s

M1

m1�9

B0
m0m1

rm0
d0r

m1
d1

¦"0−rd1# s

M0

m0�9

s

M1

m1�9

B1
m0m1

rm0
d0r

m1
d1 "13#

with the coe.cients B9
m0m1

s\ B0
m0m1

s and B1
m0m1

s repre!
senting appropriate integrals of the given Io and Ib[
Having obtained B9

m0m1
s\ B0

m0m1
s and B1

m0m1
s\ we can evalu!

ate Q−
d for various values of rd0 and rd1 by substituting

those values into equation "13#\ provided that the
geometry and the driving term "Io and Ib# are _xed[ Using
other existing methods\ for example\ the conventional
Monte Carlo method in ð02Ł\ we have to perform the
whole solution procedure if rd0 and rd1 are changed[
Therefore\ the present technique is particularly suitable\
not only for direct problems in which the radiative
exchange for various values of the surface re~ectivity is
our concern\ but also for the inverse problem estimating
the surface re~ectivity with known geometry and a given
driving term[ In the inverse problem\ if the radiative
transfer rate of a discrete surface is measured\ the surface
re~ectivity can be found by applying a root!_nding
method to the algebraic expression of the radiative
transfer rate rather than solving direct surface radiative
exchange iteratively as done in many other methods for
inverse problems[

If the surface re~ectivity is described by more than one

parameter\ the number of radiative intensities\ ~uxes or
transfer rates measured shall not be less than the number
of the parameters[ Then\ the parameters describing the
surface re~ectivity can be estimated by a least squares
minimization method or simultaneously solving the
algebraic expressions of the measured radiative physical
quantities[

2[ Numerical methods

To illustrate the numerical methods for the evaluation
of the coe.cients of the polynomial of the surface re~ec!
tivity\ we consider the expressions of Q−\ equations "19#
and "13#[ The coe.cients in the expressions of Q− are
the multiple integrations of the driving term[ Although
analytical integration can be performed for cases of very
simple geometry\ numerical methods are more feasible in
general[

2[0[ Reverse Monte Carlo method

In this work\ we adopted the RMC ð3\ 4Ł originally
developed to solve the radiative transfer in a participating
medium\ because it provides a better estimator for inten!
sity\ incident radiation or radiative ~ux at a point with a
smaller random error than the conventional Monte Carlo
method does[ The basis of this method is the principle of
reciprocity in radiative transfer theory ð4Ł\ and the bundle
tracing is in a time!reversed manner[ The details have
been described ð4Ł and so they are not duplicated here[

When we employ the RMC to the simulation of the
successive substitution procedure generating equations
"8#\ "04#\ "19# or "13#\ we require that the value of the
surface re~ectivity shall not be speci_ed in advance[ To
meet this requirement\ we adopt the RMC with import!
ance sampling[ Dunn ð03Ł applied the conventional
Monte Carlo method with importance sampling to gen!
erating an expression in terms of the scattering albedo
for the transmissivity or the re~ectivity of an isotropically
scattering slab[ His results show that the importance sam!
pling technique works very well\ except that the resulting
expression does not include the coe.cients in explicit
form[

In the bundle!tracing procedure of the RMC with
importance sampling\ when the traced bundle strikes a
real surface element\ we do not require to generate a
random number to determine the interaction between the
bundle and the struck surface element as is done in the
original RMC\ but force the bundle to be re~ected to
continue the tracing procedure[ The tracing procedure
stops when the bundle strikes an imaginary surface and
we score the entering radiation at the imaginary surface
element\ or when the number of re~ections that the bun!
dle has undergone is more than a prescribed number[
Before the ending of tracing a bundle\ the total number
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of re~ections is scored for the entering radiation[ If the
surface emission is present\ the local blackbody intensity
should be scored for each strike\ and the scores resulting
from emission and those resulting from entering radi!
ation shall be counted separately because the scores
resulting from surface emission have to be multiplied by
an additional factor 0−ra[ Hence\ after N bundles are
traced\ the coe.cient Ba

m can be estimated by the product
of pAp:N and the sum of the scores for m!time re~ections[
Then\ we can obtain the algebraic expression for Q− in
terms of the surface re~ectivity[

2[1[ Quadrature method

The QM employs a numerical quadrature to approxi!
mate an integral[ When Q−

d is evaluated by equation "19#
with the coe.cients in the surface integral form using
the QM\ the area integrations over the entire enclosure
surface are _rst divided into the area integrations over
real surfaces and those over imaginary surfaces[ Each
of the area integrations is approximated by a product
quadrature formula[ Then\ for the di}use re~ection cases
the values of U9 and Ud

ms on all quadrature nodes can be
evaluated by the recurrence relations\ equations "05# and
"06#\ and the coe.cients B9 and Bd

ms can be obtained by
equations "10# and "12#[ For the specular re~ection cases\
the coe.cients B s

ms can be obtained in a similar way\
while equations "09#Ð"01# can be treated by the ray trac!
ing procedure[ Similarly\ the QM can be applied to the
evaluation of Q−

d by equation "13#[ Moreover\ since the
integrands of the integrals in the surface integral form
often have integrable singularities or some low!order
derivatives "usually the _rst derivative# of the integrands
are singular\ the subtraction technique stated in ð5Ł is
employed to improve the results of the QM in this work[

3[ Examples

3[0[ Radiative transfer throu`h a cylindrical channel

The _rst example considered here is radiative transfer
transmitted through a cylindrical channel of radius a and
of length L\ as shown in Fig[ 1"a#[ The channel is exposed
to a uniform di}use radiative intensity Id at its top end\
and its bottom end is an opening free from external
radiation[ The inner lateral surface of the channel is
assumed to be opaque\ uniform\ gray\ cold "or non!emit!
ting#\ re~ecting and absorbing[ To obtain the direct solu!
tion of the example\ we apply the RMC with importance
sampling to either specularly or di}usely re~ecting cases
and the QM to di}usely re~ecting cases\ while an ana!
lytical solution of the transmitted radiative transfer rate
for the specular cases was presented by Rabl ð04Ł[ The
analytical solution for the transmitted radiative transfer
rate was given as Fig[ 1[ The geometries of the examples considered[
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Qtr

p1a1Id

� 0−
L
a
"0−rs#1 s

�

n�0

rn−0
s

×6$0¦0
L

1na1
1

%
0:1

−0
L

1na17 "14#

If only _nite terms of the series in equation "14# are
adopted\ the exact solution reduces to a successive
approximation[ Results for the transmitted radiative
transfer rate by the three methods are listed in Table 0[
Comparison of the results shows very good agreement
for various combinations of rs or rd and L:a[

The present RMC computation uses 09 999 999 bun!
dles in each case[ In all Tables presented in this work\ the
value just following each RMC result in parentheses is
the estimator of the standard deviation of the result[ The
standard deviation can be viewed as an indicator of the
magnitude of the random error inherent in the result[
Observing the ratio of the indicator of random error to
the transmitted rate shown in Table 0\ we _nd that the

Table 0
The radiative transfer transmitted through a cylindrical channel
with a specularly! or di}usely!re~ecting lateral surface

Qtr:"p
1a1Id#

L:a rs Analytical RMC

9[0 9[0 9[8031 9[8031 "9[99997#
9[4 9[8406 9[8406 "9[99994#
9[8 9[8890 9[8890 "9[99990#

0[9 9[0 9[3174 9[3174 "9[99903#
9[4 9[5276 9[5276 "9[99909#
9[8 9[8000 9[8000 "9[99992#

09[9 9[0 9[9052 9[9052 "9[99992#
9[4 9[9736 9[9736 "9[99994#
9[8 9[4939 9[4939 "9[99997#

Qtr:"p
1a1Id#

L:a rd QM RMC

9[0 9[0 9[8983 "2# 9[8984 "9[99998#
9[4 9[8179 "2# 9[8170 "9[99996#
9[8 9[8363 "2# 9[8364 "9[99996#

0[9 9[0 9[3990 "4# 9[2887 "9[99904#
9[4 9[3898 "4# 9[3896 "9[99903#
9[8 9[5158 "4# 9[5157 "9[99903#

09[9 9[0 9[9090 "4# 9[9090 "9[99992#
9[4 9[9018 "00# 9[9018 "9[99992#
9[8 9[9497 "20# 9[9497 "9[99994#

performance of the RMC becomes better when L
decreases or ra increases[

Here\ the QM adopts the Gaussian quadrature
formulas[ The QM results show convergence when we
increase the number of nodes of the Gaussian quadrature\
and the listed results in the bottom half of Table 0 are
the convergent values[ The value just following each QM
result in parentheses is the node number of the Gaussian
quadrature formula employed[

Next\ we consider an inverse problem for the same
geometry^ the inverse problem estimates the lateral sur!
face re~ectivity of the cylindrical channel[ To shorten the
length of this report\ here we consider only the di}usely
re~ecting case\ while similar procedure can be applied to
the specularly re~ecting case[ Provided that the trans!
mitted radiative transfer is obtained by measurement and
that the coe.cients on the right!hand!side of equation
"19# are evaluated by the RMC with importance sampling\
the value of rd can be readily estimated by _nding the
root of equation "19#[ Since the coe.cients on the right!
hand!side of the algebraic equation are all positive\ the
right!hand!side of the equation is a non!decreasing func!
tion for rd varying in the ð9\ 0Ł interval[ Then\ the root
of the algebraic equation in the ð9\ 0Ł interval is unique\
and it can be easily solved by any conventional root!
_nding method\ for example\ Brent|s method ð05Ł[

Here\ we adopt the Q− solved by the QM to simulate
the required {measured| Q− on the bottom opening for a
speci_ed re~ectivity of the lateral surface[ The inverted
results for di}use re~ectivity "r¼ d# are benchmarked
against the speci_ed values of rd in the top half of Table
1\ where the value just following each inverted result in
the parentheses is the estimator of the standard deviation
of r¼ \ s¼ "r¼ #[ The value of s¼ "r¼ # can be viewed as an indicator
of the magnitude of the random error inherent in r¼ \ and
the approach to obtain s¼ "r¼ # has been described in ð03Ł[
Each inverted result in Table 1 is obtained by tracing
N � 499 999 bundles in the RMC computation for the
coe.cients B9 and Bd

ms\ and the value of M is the largest
number of bundle re~ections generated in the tracing
procedure[ In general\ the di}erence between the exact
value and the computed value of B9 and Bd

m by the RMC
decreases with the increase of the bundle number N\
because the random error inherent in the Monte Carlo
solution has order N−0:1[ Therefore\ we may expect that
the inverted results approach the exact re~ectivity as N
increases[ Inverted results for a wide range of com!
binations of L:a and rd have been checked\ and the con!
vergence tendency is con_rmed by those inverted results[

As shown in the top half of Table 1\ the inverted results
by the RMC agree well with the exact values in most of
the cases[ Since there are no measurement errors within
the {measured| Q−s\ the di}erences between the inverted
results and the exact values are almost totally due to the
random error resulting from the _nite samplings\ and
they are in the same order of magnitude as s¼ "r¼ d#\ as



C[!Y[ Wu\ S[!H[ Wu:Int[ J[ Heat Mass Transfer 31 "0888# 1144Ð11561151

Table 1
The inverted di}use lateral surface re~ectivities of cylindrical channels from the Q−s with or without simulated
measurement errors

RMC with analytical
RMC evaluated Bo

L:a rd Q−:"p1a1Id# r¼ d

9[0 9[0 9[8983 9[0922 "9[9976# 9[0990 "9[9995#
9[4 9[8179 9[4927 "9[9969# 9[4997 "9[9920#
9[8 9[8363 9[8936 "9[9950# 9[8907 "9[9944#

0[9 9[0 9[3990 9[0918 "9[9924# 9[0991 "9[9992#
9[4 9[3898 9[4917 "9[9912# 9[4998 "9[9909#
9[8 9[5158 9[8911 "9[9904# 9[8909 "9[9902#

09[9 9[0 9[9090 9[0182 "9[9260# 9[0997 "9[9911#
9[4 9[9029 9[4961 "9[9987# 9[4990 "9[9929#
9[8 9[9497 9[8992 "9[9994# 9[8990 "9[9993#

L:a rd Measurement error r¼ d

0[9 9[0 −2[9) 9[9265 "9[9927# 9[9236 "9[9990#
−0[9) 9[9704 "9[9925# 9[9677 "9[9991#
¦0[9) 9[0128 "9[9924# 9[0102 "9[9992#
¦2[9) 9[0537 "9[9922# 9[0512 "9[9993#

0[9 9[4 −2[9) 9[3362 "9[9913# 9[3342 "9[9998#
−0[9) 9[3735 "9[9912# 9[3716 "9[9909#
¦0[9) 9[4195 "9[9911# 9[4077 "9[9909#
¦2[9) 9[4442 "9[9910# 9[4424 "9[9909#

0[9 9[8 −2[9) 9[7455 "9[9904# 9[7443 "9[9902#
−0[9) 9[7762 "9[9904# 9[7750 "9[9902#
¦0[9) 9[8057 "9[9904# 9[8046 "9[9902#
¦2[9) 9[8343 "9[9903# 9[8331 "9[9902#

expected[ Comparison among various cases shows that
the performance of the present method for the cases of
large L and small rd is worse than that for the other cases[
The performance of the present method degenerates\
when the RMC used to evaluate B9 and Bd

ms becomes
ine.cient or when the absolute value of 1Q−:1rd is small[
The former includes the cases where B9 is too small to be
evaluated accurately by the RMC for a long tube and
where the contribution of re~ection to Q− is small
because of a low lateral surface re~ectivity[ It is found
that B9 can be integrated analytically for the present
geometry[ By integrating B9 analytically and evaluating
Bd

ms by the RMC\ we may improve the results as shown
in Table 1[

In most practical applications\ the measured values
always contain a few percent of error[ Hence\ we have to
examine the e}ect of the measurement error on inverted
results[ In the bottom half of Table 1\ we tabulate some

inverted results for the Q−s obtained by adding or sub!
tracting 0[9 and 2[9) of their exact values for L:a � 0[9[
The bottom half of Table 1 shows that the inverted results
for the Q−s with smaller simulated measurement errors
are closer to the exact values than those with larger simu!
lated measurement errors\ and the inverted results from
the Q−s with 2[9) simulated measurement errors are
still meaningful[

In this example\ it takes 25 CPU s on a HP 604 work!
station to invert 16 values of the di}use surface re~ectivity
for a channel of L:a � 0[9 using 499 999 bundles[ Since
most of the CPU time is spent on the bundle!tracing
procedure\ the present inverse method requires almost as
much CPU time as a direct solution procedure by the
RMC with importance sampling[ On the other hand\ the
others of inversion methods usually take several times
the CPU of their direct solutions because of their iteration
nature[
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3[1[ Radiative exchan`e in a packed sphere system

The second example considered is to solve the radiative
exchange in a regularly packed sphere system[ This prob!
lem has been viewed as a simpli_ed model of radiative
transfer in porous media ð06Ð08Ł\ where the geometric
dimensions of the pores within the porous media are so
large that radiative transfer in the media can be treated
in the geometric optics range[ The present system consists
of in_nite horizontal layers of identical cold opaque large
spheres packed in a BCC arrangement\ as shown in Fig[
1"b#\ and the top of the packed system is exposed to a
uniform di}use radiation of intensity Id\ where D is the
diameter of a sphere\ and W is the side length of a unit
cell[ The surfaces of the spheres are assumed to be gray\
absorbing and di}usely or specularly re~ecting\ and the
re~ectivity of the surfaces is constant[ Besides\ di}raction
phenomenon is supposed to be negligible ð06Ð08Ł[ Then\
radiative transfer in the packed system can be treated as
surface radiative exchange in a complex!shaped enclosure
composed of solid spherical surfaces\ two horizontal
imaginary transparent planes at the top and at the
bottom\ and four vertical imaginary specularly re~ecting
planes with unity re~ectivity ð08Ł[ Obviously\ the appar!
ent transmissivity and the apparent re~ectivity of the
packed system are equivalent to the incident radiative
transfer rates of the bottom and the top imaginary
surfaces\ respectively[

We _rst solve the apparent transmissivity Tr and the
apparent re~ectivity Rf of the packed sphere system by
the successive approximation method[ Since the geometry
of the system is very complicated\ the RMC with import!
ance sampling is preferable and is adopted[ Comparing
the present direct results with those solved by the discrete!
ordinates method developed in ð08Ł\ we _nd that they are
in very good agreement for either di}use or specular
re~ecting[

Then\ we consider the inverse problem estimating the
surface re~ectivity of the spheres from Tr or from Rf of
the packed system[ The inverted results for di}use and
specular cases from the {measured| Trs and the {measured|
Rf s reported in ð08Ł are listed in the top half of Table 2\
respectively[ The e}ects of measurement error on inverted
results are also considered[ We use the values of Tr and
Rf obtained by adding or subtracting 0[9 and 2[9) of the
solutions reported in ð08Ł as the measured values\ and
the inverted results are tabulated in the bottom half of
Table 2[

The inverted results with zero simulated measurement
error agree very well with the exact values except for
those determined from Tr for a small rd or rs\ as shown
in the top half of Table 2[ The reason of the worse results
for small rd or rs is the same as that of the worse results
for the above cylindrical channel example with small rd

or rs[ As shown in the bottom half of Table 2\ the larger
simulated measurement errors induce larger deviations

from the exact values\ and the present technique can still
generate meaningful results even for the cases with 2[9)
simulated measurement error except the results inverted
from Tr for rd � 9[0 or rs � 9[0[ Since great progress of
the measurement technique of the hemi!spherical re~ec!
tivity of a surface for di}use irradiation has been made
ð19Ł\ estimating the surface re~ectivity of the spheres from
Rf seems superior to that from Tr in the packed sphere
system[

The present inverse method requires 024 CPU s on a
HP 604 workstation to determine three values of specular
sphere surface re~ectivity in a three!layered system
employing 499 999 bundles[

3[2[ Radiative transfer from an in_nite plane to rows of
parallel tubes of in_nite len`th

In the third example\ we consider rows of parallel tubes
arranged between two parallel in_nite transparent planes\
and the top plane is exposed to an external radiation
equal to the emissive power of a black surface Eb[ Each
row consists of in_nitely many tubes of in_nite length
and diameter D arranged in an equal center!to!center
distance C\ and the separation distance between two
adjacent rows is H[ To illustrate\ a system of three rows is
shown in Fig[ 1"c#[ The tubes are assumed to be identical\
uniform\ cold\ absorbing\ and di}usely re~ecting with the
surface re~ectivity rd[ Since the considered two!dimen!
sional system extends to in_nity in the direction parallel
to the top and bottom planes\ we can consider only a
column con_ned by two {symmetrical| planes which can
be treated as specularly re~ecting surfaces of unit re~ect!
ivity\ as shown in Fig[ 1"c#[

To treat the complicated geometry of the system\ the
RMC with importance sampling is adopted[ The view
factors from an emitting black top plane to each row in
a ten!tube!row con_guration with rows arranged in an
equilateral triangular array "H �"z2C#:1# has been
obtained recently ð10Ł by a conventional Monte Carlo
method[ For comparison purpose\ we applied the present
technique to the same computation by using 09 999 999
bundles\ and set rd � 9 in the algebraic expression
developed\ since the tube surfaces considered in ð10Ł are
assumed to be black[ Comparison of the present results
and those obtained by ð10Ł shows that they are the same
to the four digits[

Then\ the present bundle!tracing code is applied to the
di}usely re~ecting cases consisting of two rows of tubes^
the re~ectivities of tube surfaces of the _rst and the second
rows are rd0 and rd1\ respectively[ The top half of Table
3 lists the apparent transmissivity Tr and the apparent
re~ectivity Rf obtained for the two!row system exposed
to di}use radiation[ From the top half of Table 3\ we _nd
that the performance of the RMC is better for a tube with
a larger re~ectivity and the piece!wise constant re~ectivity
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Table 2
The inverted di}use and specular surface re~ectivities of spheres in three!layer packed sphere systems
from Tr or Rf with or without simulated measurement errors

Inverted from Tr Inverted from Rf

rd Tr ð08Ł Rf ð08Ł r¼ d

9[0 9[9910 9[9508 9[0329 "9[9592# 9[9887 "9[9991#
9[4 9[9921 9[2355 9[4011 "9[9012# 9[3881 "9[9996#
9[8 9[9049 9[6524 9[8911 "9[9909# 9[7881 "9[9997#

rs Tr ð08Ł Rf ð08Ł r¼ s

9[0 9[9913 9[9387 9[9844 "9[9034# 9[0990 "9[9991#
9[4 9[9950 9[1867 9[3850 "9[9932# 9[4991 "9[9996#
9[8 9[9260 9[6051 9[7886 "9[9997# 9[8991 "9[9996#

rd Measurement error r¼ d

9[0 −2[9) 9[9660 "9[9709# 9[9858 "9[9991#
−0[9) 9[0120 "9[9547# 9[9877 "9[9991#
¦0[9) 9[0501 "9[9447# 9[0997 "9[9991#
¦2[9) 9[0839 "9[9375# 9[0916 "9[9991#

9[4 −2[9) 9[3849 "9[9023# 9[3752 "9[9996#
−0[9) 9[4956 "9[9016# 9[3838 "9[9996#
¦0[9) 9[4066 "9[9019# 9[4923 "9[9996#
¦2[9) 9[4179 "9[9003# 9[4008 "9[9996#

9[8 −2[9) 9[7875 "9[9909# 9[7722 "9[9997#
−0[9) 9[8900 "9[9909# 9[7839 "9[9997#
¦0[9) 9[8923 "9[9909# 9[8933 "9[9997#
¦2[9) 9[8946 "9[9909# 9[8034 "9[9997#

rs Measurement error r¼ s

9[0 −2[9) 9[9681 "9[9041# 9[9861 "9[9991#
−0[9) 9[9898 "9[9036# 9[9880 "9[9991#
¦0[9) 9[0999 "9[9033# 9[0900 "9[9991#
¦2[9) 9[0009 "9[9028# 9[0929 "9[9991#

9[4 −2[9) 9[3751 "9[9934# 9[3771 "9[9996#
−0[9) 9[3818 "9[9933# 9[3851 "9[9996#
¦0[9) 9[3882 "9[9932# 9[4930 "9[9996#
¦2[9) 9[4945 "9[9931# 9[4008 "9[9996#

9[8 −2[9) 9[7842 "9[9997# 9[7751 "9[9996#
−0[9) 9[7871 "9[9997# 9[7845 "9[9996#
¦0[9) 9[8900 "9[9997# 9[8936 "9[9996#
¦2[9) 9[8928 "9[9997# 9[8025 "9[9996#

"W:D � 0[0436\ N � 499 999#[

does not seem to induce any particular di.culty[
However\ a little bit larger computer memory is required
to store the values of the coe.cients in the algebraic
expression generated by the successive approximation[

Finally\ we consider the inverse problem estimating the

surface re~ectivities of the tubes in a two!row system
exposed to di}use radiation[ We _rst develop the two
algebraic equations in terms of the two unknown surface
re~ectivities by the present technique[ Giving {measured|
Tr and Rf and solving the two algebraic equations sim!
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Table 3
The direct results of Tr and Rf and the inverted di}use surface re~ectivities of tubes in a 1!tube!row
con_guration from Tr and Rf with simulated measurement errors

rd0 rd1 Rf Tr

9[1 9[1 9[0031 "9[99992# 9[0432 "9[99900#
9[4 9[4 9[2900 "9[99996# 9[0640 "9[99900#
9[7 9[7 9[4110 "9[99900# 9[1107 "9[99901#
9[1 9[4 9[0212 "9[99993# 9[0511 "9[99900#
9[4 9[1 9[1674 "9[99996# 9[0511 "9[99900#
9[1 9[7 9[0411 "9[99995# 9[0618 "9[99900#
9[7 9[1 9[3442 "9[99901# 9[0617 "9[99900#
9[4 9[7 9[2164 "9[99997# 9[0818 "9[99900#
9[7 9[4 9[3737 "9[99900# 9[0818 "9[99900#

rd0 rd1 Measurement error r¼ d0 r¼ d1

9[1 9[4 −1[9) 9[1981 "9[9925# 9[2663 "9[9930#
−0[9) 9[1934 "9[9922# 9[3391 "9[9928#
¦0[9) 9[0847 "9[9917# 9[4460 "9[9925#
¦1[9) 9[0807 "9[9915# 9[5004 "9[9923#

9[4 9[1 −1[9) 9[4904 "9[9933# 9[0960 "9[9924#
−0[9) 9[4996 "9[9939# 9[0435 "9[9922#
¦0[9) 9[3884 "9[9923# 9[1323 "9[9920#
¦1[9) 9[3880 "9[9921# 9[1749 "9[9929#

9[4 9[4 −1[9) 9[3884 "9[9914# 9[3168 "9[9915#
−0[9) 9[3886 "9[9913# 9[3536 "9[9914#
¦0[9) 9[4993 "9[9910# 9[4228 "9[9912#
¦1[9) 9[4998 "9[9919# 9[4554 "9[9912#

9[4 9[7 −1[9) 9[3866 "9[9905# 9[6343 "9[9908#
−0[9) 9[3877 "9[9904# 9[6621 "9[9908#
¦0[9) 9[4902 "9[9903# 9[7147 "9[9907#
¦1[9) 9[4915 "9[9903# 9[7495 "9[9907#

9[7 9[4 −1[9) 9[6810 "9[9907# 9[3455 "9[9908#
−0[9) 9[6859 "9[9906# 9[3676 "9[9907#
¦0[9) 9[7939 "9[9905# 9[4193 "9[9906#
¦1[9) 9[7970 "9[9904# 9[4399 "9[9906#

9[7 9[7 −1[9) 9[6897 "9[9900# 9[6690 "9[9902#
−0[9) 9[6843 "9[9900# 9[6743 "9[9902#
¦0[9) 9[7935 "9[9909# 9[7039 "9[9902#
¦1[9) 9[7982 "9[9909# 9[7164 "9[9901#

C:D � 1[9\ H:D � 0[621[

ultaneously\ we can obtain rd0 and rd1[ Some inverted
results are shown in the bottom half of Table 3[

Since no other direct solution of high order accuracy
seems to be available\ we employ the direct solutions
listed in the top half of Table 3 and put more emphasis
on the e}ects of measurement errors on the inverted
results[ The tabulated results are obtained by the present

method for various values of simulated measurement
errors[ Here\ we add or subtract 0[9 or 1[9) of the direct
solutions of Tr and Rf simultaneously as the {measured|
values[ From the bottom half of Table 3\ the discrepancy
between the inverted and the exact values decreases as the
simulated measurement errors become small\ as expected\
and the surface re~ectivity of the second row is more
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sensitive to the measurement errors than that of the _rst
row[ In other words\ the estimation of the surface re~ec!
tivity of the _rst row is easier than that of the second
row[ Moreover\ the e}ects of measurement errors on
the inverted results are pronounced when the surface
re~ectivity is small[

The CPU time required to estimate 13 sets of the two
surface re~ectivities using 09 999 999 bundles on a HP
604 workstation is about 0599 s[ The bundle!tracing pro!
cedure of the RMC uses most of the CPU time[

4[ Concluding remarks

In the above exempli_cations\ a technique based on
successive approximation is adopted to solve direct and
inverse problems of radiative exchange among surfaces[
In the solution procedure of the direct problems\ either
the RMC with importance sampling or the QM is
employed only once to obtain the expression of solutions
for various surface re~ectivities\ provided that the
geometry and the driving term are _xed[ Therefore\ the
present technique can save the computational labor when
a large number of cases with di}erent values of re~ec!
tivities are studied for the same geometry[ Comparisons
of the present results of direct problems and the results
available in the literature show excellent agreement[

Similarly\ when one applies the present technique to
an inverse problem estimating the surface re~ectivities\
one does not need to solve the associated direct problem
repetitively[ As the examples shown\ from the knowledge
of the geometrical con_guration and the incident radi!
ative transfer rates of surfaces\ including the apparent
transmissivity or re~ectivity of a system exposed to exter!
nal radiation\ we can estimate the surface re~ectivities
e.ciently[ The inverted results are in good agreement
with the exact values[ The present technique can still
generate meaningful results even for the cases with 2[9)
simulated measurement error except the results inverted
from the apparent transmissivity of a system with very
small re~ectivity[ The required CPU time is far less than
that for using an iterative algorithm with a conventional
Monte Carlo method to solve direct radiative exchange[
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Appendix

In this Appendix\ we show that equation "3#\ in
essence\ is a Fredholm integral equation of the second

kind where I is the unknown\ r¹ is the independent variable
and s¼ is a parameter[ First\ we express equation "3# in the
surface integral form

I"r¹\s¼# � V"r¹\s¼#¦gA

rý"r¹\s¼?\s¼#cv"r¹?^r¹#I"r¹?\s¼?#
mim?

=r¹−r¹?=1
dA?

"A0#

where s¼? is expressed by r¹\ r¹?

s¼? �
r¹−r¹?
=r¹−r¹?=

"A1#

Both r¹ and r¹?are on the enclosure surface described by a
function

`"r¹# � 9 "A2#

The unit normal vector n¼ of dA can be expressed as

n¼ � 2
9`"r¹#
=`"r¹# =

"A3#

The sign in equation "A3# is determined by the require!
ment that n¼ is an inward normal for the volume enclosed
by `"r¹# � 9[ Hence\ mi �"−s¼?# = n¼ and m? � s¼? = n¼?[ Then\
equation "A0# can be rewritten as

I"r¹\s¼# � V"r¹\s¼#¦gA

rý0r¹\
r¹−r¹?
=r¹−r¹?=

\s¼1cv"r¹?^r¹#I0r¹\
r¹−r¹?
=r¹−r¹?=1

×
0

=r¹−r¹?=3
"r¹?−r¹# = $2

9`"r¹#
=9`"r¹# =%"r¹−r¹?# = $2

9`"r¹?#
=9`"r¹?# =% dA?

"A4#

Therefore\ the integral equation of intensity is indeed a
Fredholm integral equation of the second kind with a
parameter s¼[
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